

CERAMC FIBER BOARD SAFETY DATA SHEET

BOARD SDS REVISED: 01/03/19

1. CHEMICAL PRODUCT AND COMPANY IDENTIFICATION

Trade Name: TaoFibre® Board

Product Group: REFRACTORY CERAMIC FIBER BOARD
Chemical Name: VITREOUS ALUMINOSILICATE FIBER

Synonym(s): RCF, ceramic fiber, synthetic vitreous fiber (SVF), man-made

vitreous fiber (MMVF)

Board Series: Ceramic Board (HD, LD) – Standard Grade, High Purity Grade

Manufacturer/Supplier: Manufactured and supplied by

Ceramsource, Inc.

26 Kennedy Blvd, Suite B East Brunswick, NJ 08816

Tel: 732-257-5002 Fax: 732-257-5003

2. HAZARDS IDENTIFICATION

(a) Classification of the chemical in accordance with paragraph (d) of §1910.1200

The U.S. Occupational Safety and Health Administration (OSHA) Hazard Communication Standard (HCS) 2012 indicates that IARC Group 2B corresponds to OSHA HCS 2012 Category 2 carcinogen classification (see, e.g., §1910.1200, Appendix F, Part D).

(b) Signal word, hazard statement(s), symbol(s) and precautionary statement(s) in accordance with paragraph (f) of §1910.1200

Under OSHA HCS 2012, RCF is classified as a category 2 carcinogen.

Hazard Pictogram

Signal Word

Warning

Hazard Statements

Suspected of causing cancer by inhalation.

Precautionary statements

Do not handle until all safety instructions have been read and understood. Use respiratory protection as required; see section 8 of the Safety Data Sheet.

If concerned about exposure, get medical advice.

Store in a manner to minimize airborne dust.

Dispose of waste in accordance with local, state and federal regulations.

Supplementary Information

May cause temporary mechanical irritation to exposed eyes, skin or respiratory tract.

Minimize exposure to airborne dust.

3. COMPOSITION / INFORMATION ON INGREDIENTS

<u>COMPONENTS</u>	<u>CAS NUMBER</u>	<u>% BY WEIGHT</u>
Refractories, Fibers, Aluminosilicate	142844-00-6	70-85
Silica (amorphous)	112926-00-8	10-15
Starch	9005-25-8	5-10

(See Section 8 "Exposure Controls / Personal Protection" for exposure guidelines)

4. FIRST AID MEASURES

FIRST AID PROCEDURES

RESPIRATORY TRACT (nose & throat) IRRITATION:

If respiratory tract irritation develops, move the person to a dust free location. Get medical attention if the irritation continues. See Section 8 for additional measures to reduce or eliminate exposure.

EYE IRRITATION:

If eyes become irritated, flush immediately with large amounts of lukewarm water for at least 15

minutes. Eyelids should be held away from the eyeball to ensure thorough rinsing. Do not rub eyes. Get medical attention if irritation persists.

SKIN IRRITATION:

If skin becomes irritated, remove soiled clothing. Do not rub or scratch exposed skin. Wash area of contact thoroughly with soap and water. Using a skin cream or lotion after washing may be helpful.

GASTROINTESTINAL IRRITATION:

If gastrointestinal tract irritation develops, move the person to a dust free environment.

NOTES TO PHYSICIANS:

Skin and respiratory effects are the result of temporary, mild mechanical irritation; fiber exposure does not result in allergic manifestations.

5. FIRE FIGHTING MEASURES

NFPA Codes: Flammability: 0 Health: 1 Reactivity: 0 Special: 0

NFPA Unusual Hazards: None Flammable Properties: None

Flash Point: None

Hazardous Decomposition Products: Thermal decomposition of binder from fires or from first heat of product may release smoke, carbon monoxide, and carbon dioxide. Use adequate ventilation or other precautions to eliminate exposure to vapors resulting from thermal decomposition of binder. Exposure to thermal decomposition fumes may cause respiratory tract irritation, bronchial hyper-reactivity or an asthmatic-type response.

Unusual Fire and Explosion Hazard: None

Extinguishing Media: Use extinguishing media suitable for type of surrounding fire.

6. ACCIDENTAL RELEASE MEASURES

SPILL PROCEDURES

Avoid creating airborne dust. Dust suppressing cleaning methods such as wet sweeping or vacuuming should be used to clean the work area. If vacuuming, the vacuum must be equipped with a HEPA filter. Compressed air or dry sweeping should not be used for cleaning.

7. HANDLING AND STORAGE

STORAGE

Store in original container in a dry area. Keep container closed when not in use.

HANDLING

Handle ceramic fiber carefully. Limit use of power tools unless in conjunction with local exhaust. Use hand tools whenever possible. Frequently clean the work area with HEPA filtered vacuum or wet sweeping to minimize the accumulation of debris. <u>Do not use compressed air for clean-up.</u>

EMPTY CONTAINERS

Product packaging may contain residue. Do not reuse.

8. EXPOSURE CONTROLS/PERSONAL PROTECTION

EXPOSURE GUIDELINES -- RCF

COMPONENTS	OSHA PEL	MANUFACTURER REG
Refractories, Fibers, Aluminosilicate	None Established*	0.5 f/cc, 8-hr. TWA**

^{*} There is no specific regulatory standard for RCF in the U.S. OSHA's "Particulate Not Otherwise Regulated (PNOR)" standard [29 CFR 1910.1000, Subpart Z, Air Contaminants] applies generally; Total Dust 15 mg/m³; Respirable Fraction 5 mg/m³.

OTHER OCCUPATIONAL EXPOSURE LEVELS (OEL)

RCF-related occupational exposure limits vary internationally. Regulatory OEL examples include: Australia – 0.5 f/cc; Austria – 0.5 f/cc; Canada – 0.5 to 1.0 f/cc; Denmark – 1.0 f/cc; France – 0.6 f/cc; Germany – 0.5 f/cc; Netherlands – 1.0 f/cc; New Zealand – 1.0 f/cc; Norway – 2.0 f/cc; Poland – 2.0 f/cc; Sweden – 1.0 f/cc; United Kingdom – 2.0 f/cc. Non-regulatory OEL examples include: ACGIH TLV 0.2 f/cc; RCFC REG 0.5 f/cc. The objectives and criteria underlying each of these OEL decisions also vary. The evaluation of occupational exposure limits and determining their relative applicability to the workplace is best performed, on a case-by-case basis, by a qualified Industrial Hygienist.

EXPOSURE GUIDELINES -- OTHER INGREDIENTS

COMPONENTS	OSHA PEL	MANUFACTURER REG
Silica (amorphous) Starch	20 mppcf or 80 mg/m³ / % SiO2 5 mg/m³ PEL (resp. dust) 15 mg/m³ PEL (total dust)	None established None established

OTHER OCCUPATIONAL EXPOSURE LEVELS (OEL)

Non-regulatory OEL examples include: ACGIH TLVs (TWAs): Silica (amorphous) -- 10 mg/m³. Starch -- 10 mg/m³.

^{**} The Refractory Ceramic Fibers Coalition (RCFC) has sponsored comprehensive toxicology and epidemiology studies to identify potential RCF-related health effects [see Section 11 for more details], consulted experts familiar with fiber and particle science, conducted a thorough review of the RCF-related scientific literature, and further evaluated the data in a state-of-the-art quantitative risk assessment. Based on these efforts and in the absence of an OSHA PEL, RCFC has adopted a recommended exposure guideline, as measured under NIOSH Method 7400 B. The manufacturers' REG is intended to promote occupational health and safety through prudent exposure control and reduction and it reflects relative technical and economic feasibility as determined by extensive industrial hygiene monitoring efforts undertaken pursuant to an agreement with the U.S. Environmental Protection Agency.

ENGINEERING CONTROLS

Use engineering controls such as local exhaust ventilation, point of generation dust collection, down draft work stations, emission controlling tool designs, and materials handling equipment designed to minimize airborne fiber emissions.

PERSONAL PROTECTION EQUIPMENT

Respiratory Protection – RCF:

When engineering and/or administrative controls are insufficient to maintain workplace concentrations within the 0.5 f/cc REG, the use of appropriate respiratory protection, pursuant to the requirements of OSHA Standards 29 CFR 1910.134 and 29 CFR 1926.103, is recommended. The following information is provided as an example of appropriate respiratory protection for aluminosilicate fibers. The evaluation of workplace hazards and the identification of appropriate respiratory protection is best performed, on a case by case basis, by a qualified Industrial Hygienist.

MANUFACTURER'S RESPIRATORY PROTECTION RECOMMENDATIONS WHEN HANDLING RCF PRODUCTS			
Respirable Airborne Fiber Concentration (levels are 8-hr. time-weighted averages)	Respirator Recommendation †		
Not yet determined but expected to be below 5.0 f/cc based on operation	Half-face, air purifying respirator equipped with a NIOSH certified P100 particulate filter cartridge		
"Reliably" less than 0.5 f/cc	Optional		
0.5 f/cc to 5.0 f/cc	Half-face, air purifying respirator equipped with a NIOSH certified P100 particulate filter cartridge		
5.0 f/cc to 25 f/cc	Full-facepiece, air purifying respirator equipped with a NIOSH certified P100 particulate filter cartridge or PAPR		
Greater than 25 f/cc	PAPR with tight-fitting full facepiece or a supplied air respirator in continuous flow mode		
When individual workers request respiratory protection as a matter of personal comfort or choice where exposures are "reliably" below 0.5 f/cc	A NIOSH certified respirator, such as a disposable particulate respirator, or respirators with filter cartridges rated N95 or better		

[†]The P100 recommendation is a conservative default choice; in some case, solid arguments can be made that other respirator types (e.g., N95, R99, etc.) may be suitable for some tasks or work environments. The P100 recommendation is not designed to limit informed choices, provided that respiratory protection decisions comply with 29 CFR 1910.134.

Other Information:

- Concentrations based upon an eight-hour time weighted average (TWA) as determined by air samples collected and analyzed pursuant to NIOSH method 7400 (B) for airborne fibers.
- The manufacturer recommends the use of a full-facepiece air purifying respirator
 equipped with an appropriate particulate filter cartridge during furnace tear-out events
 and the removal of used RCF to control exposures to airborne fiber and the potential
 presence of crystalline silica. If exposure levels are known, the respiratory protection
 chart provided above may be applied.
- Potential exposure to other airborne contaminants should be evaluated by a qualified Industrial Hygienist for the selection of appropriate respiratory protection and air monitoring.

Skin Protection:

Wear gloves, head coverings and full body clothing as necessary to prevent skin irritation. Washable or disposable clothing may be used. If possible, do not take unwashed clothing home. If soiled work clothing must be taken home, employers should ensure employees are thoroughly trained on the best practices to minimize or avoid non-work dust exposure (e.g., vacuum clothes before leaving the work area, wash work clothing separately, rinse washer before washing other household clothes, etc.).

Eye Protection:

Wear safety glasses with side shields or other forms of eye protection in compliance with appropriate OSHA standards to prevent eye irritation. The use of contact lenses is not recommended, unless used in conjunction with appropriate eye protection. Do not touch eyes with soiled body parts or materials. If possible, have eye-washing facilities readily available where eye irritation can occur.

9. PHYSICAL AND CHEMICAL PROPERTIES

ODOR AND APPEARANCE: White, odorless, fibrous material Vitreous Aluminosilicate Fibers

BOILING POINT: Not Applicable
WATER SOLUBILITY (%): Not Soluble in Water
MELTING POINT: 1760° C (3200° F)
SPECIFIC GRAVITY: 2.50 – 2.75

VAPOR PRESSURE:

pH:

VAPOR DENSITY (Air = 1):

VOLATILE:

MOLECULAR FORMULA:

Not Applicable

Not Applicable

Not Applicable

10. STABILITY AND REACTIVITY

CHEMICAL STABILITY: Stable under conditions of normal use.

INCOMPATIBILITY: Soluble in hydrofluoric acid, phosphoric acid, and

concentrated alkali.

CONDITIONS TO AVOID: None.

HAZARDOUS DECOMPOSITION PRODUCTS:

Thermal decomposition of binder from fires or from first heat of product may release smoke, carbon monoxide, and carbon dioxide. Use adequate ventilation or other precautions to eliminate exposure to vapors resulting from thermal decomposition of binder. Exposure to thermal decomposition fumes may cause respiratory tract irritation, bronchial hyperreactivity or an asthmatic-type response.

HAZARDOUS POLYMERIZATION:

Not Applicable.

11. TOXICOLOGICAL INFORMATION

HEALTH DATA SUMMARY

Epidemiological studies of RCF production workers have indicated no increased incidence of respiratory disease nor other significant health effects. In animal studies, long-term, high-dose inhalation exposure resulted in the development of respiratory disease in rats and hamsters.

EPIDEMIOLOGY

The University of Cincinnati is conducting an ongoing epidemiologic investigation. The evidence obtained from employees in U. S. RCF manufacturing facilities is as follows:

- 1) There is no evidence of any fibrotic lung disease (interstitial fibrosis) from evaluations of chest X-rays.
- 2) There is no evidence of an elevated incidence of lung disease among RCF manufacturing employees.
- 3) In early studies, an apparent statistical "trend" was observed, in the exposed population, between RCF exposure duration and some measures of lung function. The observations were clinically insignificant. If these observations were made on an individual employee, the results would be interpreted as being within the normal (predicted) respiratory range. A more recent longitudinal study of employees with 5 or more pulmonary function tests found that there was no effect on lung function associated with RCF production experience. Initial data (circa 1987) seemed to indicate an interactive effect between smoking and RCF exposure; more recent data, however, found no interactive effect. Nevertheless, to promote good health, RCF employees are still actively encouraged not to smoke.
- 4) Pleural plaques (thickening along the chest wall) have been observed in a small number of RCF employees. Some studies appear to show a relationship between the occurence of pleural plaques on chest radiographs and the following variables: (a) years since RCF production hire date; (b) duration of RCF production employment; and (c) cumulative RCF exposure. The best evidence to date indicates that pleural plaques are a marker of exposure only. Pleural plaques are not associated with pulmonary impairment. The pathogenesis of pleural plaques remains incompletely understood; however, the mechanism appears to be an inflammatory response caused by inhaled fibers.

TOXICOLOGY

A number of toxicological studies designed to identify any potential health effects from RCF

exposure have been completed. In one study, conducted by the Research and Consulting Company, (Geneva, Switzerland), rats and hamsters were exposed to 30 mg/m³ (about 200 fibers/cc) of specially-prepared RCF for 6 hours/day, 5 days/week, for up to 24 months. In rats, a statistically significant increase in lung tumors was observed; two mesotheliomas (cancer of the pleural lining between the chest wall and lung) were also identified. Hamsters did not develop lung tumors; however, interstitial fibrosis and mesothelioma was found. Some, in the scientific community, have concluded that the "maximum tolerated dose" was exceeded and that significant particle contamination was a confounding issue; therefore, these study findings may not represent an accurate assessment of the potential for RCF to produce adverse health effects.

In a related multi-dose study with a similar protocol, other rats were exposed to doses of 16 mg/m³, 9 mg/m³, 3 mg/m³ which corresponds to about 115, 75, and 25 fibers per cubic centimeter respectively. This study found no statistically significant increase in lung cancer. Some cases of pleural and parenchymal fibrosis were seen in the 16 mg/m³ dose group. Some cases of mild fibrosis and one mesothelioma were observed in the 9 mg/m³ group. No acute respiratory effects were seen in the rats in the 3 mg/m³ exposure group, which suggests that there may be a dose/response threshold, below which irreversible respiratory impacts do not occur.

Other toxicological studies have been conducted which utilized non-physiological exposure methods such as intrapleural, intraperitoneal and intratracheal implantation or injection. Some of these studies have found that RCF is a potential carcinogen. Some experts, however, suggest that these tests have limited relevance because they bypass many of the biological mechanisms that prevent fiber deposition or facilitate fiber clearance.

12. ECOLOGICAL INFORMATION

No ecological concerns have been identified.

13. DISPOSAL CONSIDERATIONS

WASTE MANAGEMENT

To prevent waste materials from becoming airborne during waste storage, transportation and disposal, a covered container or plastic bagging is recommended.

DISPOSAL

RCF, as manufactured, is not classified as a hazardous waste according to Federal regulations (40 CFR 261). Any processing, use, alteration or chemical additions to the product, as purchased, may alter the disposal requirements. Under Federal regulations, it is the waste generator's responsibility to properly characterize a waste material, to determine if it is a "hazardous" waste. Check local, regional, state or provincial regulations to identify all applicable disposal requirements.

14. TRANSPORT INFORMATION

U.S. DEPARTMENT OF TRANSPORTATION (DOT)

United Nations (UN) Number: Not Applicable Hazard Class: Not Regulated Not Applicable North America (NA) Number: Not Applicable Labels: Placards: Not Applicable Bill of Lading: **Product Name**

INTERNATIONAL

Canadian TDG Hazard Class & PIN: Not regulated Not classified as dangerous goods under ADR (road), RID (train) or IMDG (ship).

15. REGULATORY INFORMATION

UNITED STATES REGULATIONS

EPA: Superfund Amendments and Reauthorization Act (SARA) Title III - This product does not contain any substances reportable under Sections 302, 304, 313, (40 CFR

372). Sections 311 and 312 (40 CFR 370) apply (delayed hazard).

Toxic Substances Control Act (TSCA) - All substances in this product are listed, as required, on the TSCA inventory. RCF has been assigned a CAS number; however, it is a simple mixture and therefore not required to be listed on the TSCA

inventory. The components of RCF are listed on the inventory.

Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) and the Clean Air Act (CAA) - RCF contains fibers with an average diameter greater than one micron and thus is not considered a hazardous air

pollutant.

OSHA: Comply with Hazard Communication Standards 29 CFR 1910.1200 and 29 CFR

1926.59 and the Respiratory Protection Standards 29 CFR 1910.134 and 29

CFR 1926.103.

California: Ceramic fibers (airborne particles of respirable size)" is listed in **Proposition 65**,

The Safe Drinking Water and Toxic Enforcement Act of 1986 as a chemical

known to the State of California to cause cancer.

Other RCF products are not known to be regulated by states other than California;

States: however, state and local OSHA and EPA regulations may apply to these products. If

in doubt, contact your local regulatory agency.

INTERNATIONAL REGULATIONS

Canada: Canadian Workplace Hazardous Materials Information System (WHMIS) –

> RCF is classified as Class D2A - Materials Causing Other Toxic Effects Canadian Environmental Protection Act (CEPA) - All substances in this product are listed, as required, on the Domestic Substance List (DSL)

European Directive 97/69/EC classified RCF as a Category 2 carcinogen; that European Union:

is it "should be regarded as if it is carcinogenic to man."

16. OTHER INFORMATION

RCF DEVITRIFICATION

As produced, all RCF fibers are vitreous (glassy) materials which do not contain crystalline silica. Continued exposure to elevated temperatures may cause these fibers to devitrify (become crystalline). The first crystalline formation (mullite) begins to occur at approximately 985° C (1805° F). Crystalline silica (cristobalite) formation may begin at temperatures of approximately 1200° C (2192° F). The occurrence and extent of crystalline phase formation is dependent on the duration and temperature of exposure, fiber chemistry and/or the presence of fluxing agents. The presence of crystalline phases can be confirmed only through laboratory analysis of the "hot face" fiber.

IARC's evaluation of crystalline silica states "Crystalline silica inhaled in the form of quartz or cristobalite from occupational sources is carcinogenic to humans (Group 1)" and additionally notes "carcinogenicity in humans was not detected in all industrial circumstances studied" (IARC Monograph Vol. 68, 1997). NTP lists all polymorphs of crystalline silica amongst substances which may "reasonably be anticipated to be carcinogens".

IARC and NTP did not evaluate after-service RCF, which may contain various crystalline phases. However, an analysis of after-service RCF samples obtained pursuant to an exposure monitoring agreement with the USEPA, found that in the furnace conditions sampled, most did not contain detectable levels of crystalline silica. Other relevant RCF studies found that (1) simulated after-service RCF showed little, or no, activity where exposure was by inhalation or by intraperitoneal injection; and (2) after-service RCF was not cytotoxic to macrophage-like cells at concentrations up to 320 g/cm² - by comparison, pure quartz or cristobalite were significantly active at much lower levels (circa 20 g/cm²).

RCF AFTER-SERVICE REMOVAL

Respiratory protection should be provided in compliance with OSHA standards. During removal operations, a full face respirator is recommended to reduce inhalation exposure along with eye and respiratory tract irritation. A specific evaluation of workplace hazards and the identification of appropriate respiratory protection is best performed, on a case by case basis, by a qualified industrial hygiene professional.

DEFINITIONS

ACGIH: American Conference of Governmental Industrial Hygienists
ADR: Carriage of Dangerous Goods by Road (International Regulation)

CAA: Clean Air Act

CAS: Chemical Abstracts Service

CERCLA: Comprehensive Environmental Response, Compensation and

Liability Act

DSL: Domestic Substances List

EPA: Environmental Protection Agency

EU: European Union

f/cc: Fibers per cubic centimeter **HEPA:** High Efficiency Particulate Air

HMIS: Hazardous Materials Identification System
IARC: International Agency for Research on Cancer
IATA: International Air Transport Association

IMDG: International Maritime Dangerous Goods Code

mg/m³: Milligrams per cubic meter of air mmpcf: Million particles per cubic meter NFPA: National Fire Protection Association

NIOSH: National Institute for Occupational Safety and Health

OSHA: Occupational Safety and Health Administration

29 CFR 1910.134 & OSHA Respiratory Protection Standards

1926.103:

29 CFR 1910.1200 & OSHA Hazard Communication Standards

1926.59:

PEL: Permissible Exposure Limit (OSHA)
PIN: Product Identification Number

PNOC: Particulates Not Otherwise Classified PNOR: Particulates Not Otherwise Regulated

PSP: Product Stewardship Program
RCFC: Refractory Ceramic Fibers Coalition
RCRA: Resource Conservation and Recovery Act
REG: Recommended Exposure Guideline (RCFC)
REL: Recommended Exposure Limit (NIOSH)

RID: Carriage of Dangerous Goods by Rail (International Regulations)

SARA: Superfund Amendments and Reauthorization Act

SARA Title III: Emergency Planning and Community Right to Know Act

SARA Section 302: Extremely Hazardous Substances

SARA Section 304: Emergency Release

SARA Section 311: SDS/List of Chemicals and Hazardous Inventory

SARA Section 312: Emergency and Hazardous Inventory
SARA Section 313: Toxic Chemicals and Release Reporting

STEL: Short Term Exposure Limit`
SVF: Synthetic Vitreous Fiber

TDG: Transportation of Dangerous Goods
TLV: Threshold Limit Value (ACGIH)
TSCA: Toxic Substances Control Act
TWA: Time Weighted Average

WHMIS: Workplace Hazardous Materials Information System (Canada)

DISCLAIMER

The information presented herein is presented in good faith and believed to be accurate as of the effective date of this Material Safety Data Sheet. Employers may use this SDS to supplement other information gathered by them in their efforts to assure the health and safety of their employees and the proper use of the product. This summary of the relevant data reflects professional judgment; employers should note that information perceived to be less relevant has not been included in this SDS. Therefore, given the summary nature of this document, Ceramsource, Inc. does not extend any warranty (expressed or implied), assume any responsibility, or make any representation regarding the completeness of this information or its suitability for the purposes envisioned by the user.